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Abstract

We present a numerical algorithm for solving partial differential equations on irregular domains with moving interfaces.
Instead of the typical approach of solving in a larger rectangular domain, our approach performs most calculations only in
the desired domain. To do so efficiently, we have developed a one-sided multigrid method to solve the corresponding large
sparse linear systems.

Our focus is on the simulation of the electrodeposition process in semiconductor manufacturing in both two and three
dimensions. Our goal is to track the position of the interface between the metal and the electrolyte as the features are filled
and to determine which initial configurations and physical parameters lead to superfilling.

We begin by motivating the set of equations which model the electrodeposition process. Building on existing models for
superconformal electrodeposition, we develop a model which naturally arises from a conservation law form of surface
additive evolution. We then introduce several numerical algorithms, including a conservative material transport level
set method and our multigrid method for one-sided diffusion equations. We then analyze the accuracy of our numerical
methods. Finally, we compare our result with experiment over a wide range of physical parameters.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this article, we will design a numerical algorithm to solve partial differential equations on irregular
domains with moving interfaces. This approach is considerably faster than existing ones: most of the
calculations are performed only in the desired domain instead of in an extended rectangular domain, aided
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by the use of a one-sided version of the multigrid method to solve the corresponding large sparse linear sys-
tems. Our method has been tested to give accurate numerical solutions for problems defined on domains with
convoluted geometries, including thin fingers and sharp corners.

Our focus application is the simulation of the electrodeposition process. Electroplating (see [6]) is deposi-
tion process that permits filling of high-aspect ratio features without seams or voids through the process of
superconformal deposition, also called superfilling. Our goal is to track the position of the interface between
the metal and the electrolyte as features are filled in order to determine numerically what initial configurations
lead to superfilling.

Building on existing models for superconformal electrodeposition, we develop a model which naturally
arises from a conservation law form of surface additive evolution. This model allows us to perform a careful
analysis of how superfilling depends on the choice of physical parameters, with close comparison to
experiment.

In order to successfully compute the solution to this model, several new computational techniques are
developed in this paper. These include:

1. A new conservative material transport level set method in two and three dimensions for interfaces that
carry scalar fields as they evolve.

2. An immersed interface type method for building one-sided difference operators for complex interfaces with
thin arms and fingers.

3. A multigrid method in two and three dimensions for solving one-sided diffusion equations with irregular
moving interface.

The outline of this paper is as follows. Section 2 briefly describes some existing work on electrodeposition,
and then describes a general overview of some related numerical methods. Section 3 describes the underlying
physics of the electrodeposition process and also the determination of some of the parameters used in our
model. The basic equations that need to be solved for modeling the deposition process are derived based
on previously existing models. However modifications are made so that the model is physically more
reasonable.

Section 4 presents the finite difference methods for level set equations, conservation laws, and diffusion
equations. In this section, most of the discretizations are done in two space dimensions. We discuss in Section
5 how to solve large linear systems in an efficient way and details of the one-sided multigrid method. The last
section is devoted to numerical results, conclusions, extension to the three-dimensional case, and suggestions
for future work using the methods described in this article.

2. Background material

2.1. Target application: electrodeposition

Electrodeposited copper can be used as the material for on-chip trenches and vias. The process of copper
electrodeposition (see Fig. 1) depends on the use of additives that affect the local deposition rate and this leads
to superconformal filling of trenches.
Fig. 1. An image of copper deposited from electrolyte. Voids are apparent in the trenches. The picture is taken from [29].
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Early modeling studies focused on leveling theory [42], in which the growth rate is dependent on the accu-
mulation of inhibiting species onto the metal surface. Such leveling methods are not very successful in explain-
ing the superfilling phenomena.

Subsequently, curvature-enhanced accelerator coverage (CEAC) has been proposed as the mechanism
behind this process. According to the CEAC mechanism, deposition on a non-planar surface is accompanied
by changes in the local surface area which affect the local adsorbate surface coverage. The coverage increases
on concave segments and decreases on convex segments. This leads to bottom-up filling of features since the
deposition rate is proportional to the catalyst coverage. Let j be the local curvature. In [43],
oh
ot
¼ jvhþ source term ð1Þ
is taken as the equation satisfied by the accelerator coverage, while in [44],
oh
ot
þ vr � ðnhÞ ¼ source term ð2Þ
is solved instead, which implicitly depends on the curvature since j / r � n.
The numerical results in [43,44] somewhat demonstrate the superfilling phenomena, however they both fail

to accurately predict the experimental results given in [30]. The idea of some sort of curvature dependence in
the CEAC mechanism is both appealing and natural, however the exact relationship between the rate of depo-
sition and the curvature of the interface is not clear. The approach in this paper is to build on geometric argu-
ments: we devise a physically reasonable equation for the accelerator coverage in the form of a conservation
law, which depends on the curvature in a rather implicit way. The equations are solved using fast and accurate
schemes. A comparison between the numerical solutions in Section 7 and the experimental results in [30] shows
that among all available methods, this leads to the most accurate prediction to the experimental results.

2.2. Literature survey of related work

2.2.1. The physical problem

A great deal of information on modeling electrodeposition can be found in [18,19,30,44], which are excel-
lent references for both overviews and detailed descriptions of the processes related to electrodeposition. In
particular, [44] surveys the CEAC mechanism and the corresponding numerical simulation of the process.
The simulations in [30,44] do not conform very well with the results from real experiments as shown in
[30], in part because CEAC may not be the correct way to model the process, in part because of numerical
problems that may arise either when sharp corners form or when the side walls of the trench come close.

2.2.2. Survey of numerical algorithms

From an algorithmic standpoint, a successful numerical simulation of electrodeposition requires numerical
techniques to track moving interfaces, as well as schemes to solve partial differential equations on regions
bounded by moving boundaries. Many different approaches have been developed to tackle these issues. These
include,

1. Structured mesh finite volume methods [21] for solving problems on irregular domains with moving interfaces:
They are derived from conservation laws applied to a discrete control volume. Finite difference operators
can then be used to approximate fluxes across the control surface in such a way that the discrete evolution
equation is also in the form of a conservation law. The disadvantage of this approach is that it is incapable
of representing complicated geometries and thus may be inaccurate in the presence of close walls or sharp
corners.

2. Cartesian grid embedded boundary methods introduced in [17,28] to increase the geometric flexibility of finite

volume methods: Away from the boundaries of the computational domain, this approach uses traditional
finite difference discretizations on a regular Cartesian grid. On the domain boundary, the local geometry
is incorporated by intersecting the domain with each grid cell. The operator is then approximated on each
irregular cell using a finite volume discretization. This method may lose accuracy at the domain boundaries.
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3. Finite difference methods on structured grids (see [38,40]): These methods are very popular, and a great deal
of work has been devoted to adaptive grid finite difference methods (see, for example, [32]) to deal with
boundary conditions defined along irregular interfaces. However, this approach can be very expensive
for time-dependent problems.

4. Level set methods introduced by Osher and Sethian in [31], which are numerical techniques designed to

track the evolution of interfaces: These methods track the moving boundary by embedding the inter-
face into higher dimensions, and rely in part on the theory of curve and surface evolution given in
[34,35] and on the link between front propagation and hyperbolic conservation laws discussed in [36].
The key idea is to recast interface motion as a time-dependent Eulerian initial value partial differential
equation.

5. A class of numerical methods described in [14,20] for nonlinear systems of conservation laws: They are
designed to solve conservation laws with some desired properties (such as choosing a solution satisfying
the entropy condition).

6. Immersed interface methods designed by LeVeque and Li in [22,23]: These are numerical methods which
incorporate interface jump conditions and the given partial differential equation in a local coordinate sys-
tem. Time-step restrictions can be avoided by using implicit schemes, and the resulting large linear systems
can be solved with fast linear solvers such as GMRES [33] and the multigrid methods [8]. One drawback of
this approach is that it is not conservative due to the rotated local coordinate system. In addition, by using
the partial differential equation to cancel error terms in the finite difference stencil, generating stencil coef-
ficients becomes problem-dependent and thus more difficult to automate. A complete reference in this topic
is [25].

7. Ghost fluid methods [13] for multimaterial interfaces problems: These methods track multimaterial interfaces
with level set functions, and use ghost cells to keep the density profile from smearing out while still keeping
the scheme robust and easy to program with simple extensions to multidimensions and multilevel time
integration.

8. A methodology to model arbitrary holes and material interfaces (inclusions) without meshing the internal

boundaries [39]: This numerical method couples the level set method to the extended finite-element method
(X-FEM), and the finite-element approximation is enriched by additional functions through the notion of
partition of unity.

9. An approach for solving Poisson equations on irregular domains in [15,16,26]: This augmented approach
tracks moving boundaries with level set methods and solves Poisson equations using the fast Poisson solver
based on fast Fourier transform.

We will use a combination of some of the numerical methods mentioned above, including immersed inter-
face methods for discretizing the diffusion equations, adaptive finite difference methods for solving the discret-
ized problems, followed by multigrid methods for solving the large linear systems resulting from our implicit
schemes, level set methods for tracking the interface and making continuous extensions, and conservative
schemes for solving equations in the form of conservation laws. The combination leads to a direct method
and is simple to implement.

3. Model specification

Modeling of copper deposition requires the simultaneous tracking of the copper/electrolyte interface
location, the surface coverage of the additives, and the concentration profiles of different components
in the electrolyte. We will use a level set method along with a velocity extension methodology to track
the evolution of the interface. The evolution of the accelerator coverage is determined by an equation
in the form of a conservation law with source terms which account for the change of the interface shape,
influx from the electrolyte and consumption into the metal. Concentrations within the electrolyte satisfy
diffusion equations.

Assume we have the configuration as shown in Fig. 2 for a trench with width w and height h. Experiments
(see [30]) show that the relationship between the velocity of normal propagation of the interface and the accel-
erator coverage can be expressed as:
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Fig. 2. A silicon trench is immersed in copper-contained electrolyte, with an initial thin layer of solid copper deposited on the trench. C1c ,
C1m are constant concentrations in the far field, and Ci

c, Ci
m are concentrations along the copper/electrolyte interface, where c is for copper

and m is for accelerator.
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v ¼ iðhÞXn

2F
; ð3Þ
where iðhÞ is the current density which is a function of h, n is the unit normal of the interface pointing into the
electrolyte, X is the atomic volume of copper and F is Faraday’s constant. The ‘‘2” in the denominator in Eq.
(3) comes from the cupric ion charge. The current density i is given by the Butler–Volmer equation [44],
namely
i ¼ iðgÞ ¼ i0

Ci
c

C1c
exp � aF

RT
g

� �
; ð4Þ
where i0 is the exchange current density, Ci
c and C1c are the concentrations of copper along the interface and in

the far field respectively, a is the transfer coefficient determined by experiments, R is the gas constant, T is the
temperature and g is the over-potential. Dependence of the current density on the accelerator coverage h, that
is, the i� h relationship, is empirically established on flat surfaces to be of the form
i0ðhÞ ¼ b0 þ b1h; ð5Þ

and
aðhÞ ¼ m0 þ m1h; ð6Þ

where b0, b1, m0 and m1 are constants. A combination of Eqs. (3)–(6) gives the final expression for the normal
speed of propagation:
v ¼ ðb0 þ b1hÞ �
Ci

c

C1c
� exp �ðm0 þ m1hÞF

RT
g

� �
X
2F

: ð7Þ
The concentrations of copper and accelerator in the electrolyte are governed by diffusion equations of the form
oCn

ot
¼ DnDCn; Cn ¼ C1n in the far field; ð8Þ
where Dn is the diffusion coefficient and the subscript n is given by
n ¼
m for accelerator

c for copper:

�

The flux loss from the electrolyte at the interface defines another set of boundary conditions for Eq. (8)
�Dn
oCn

on
¼

�kð1� hÞCi
m for accelerator

�vðV c � Ci
cÞ for copper;

(
ð9Þ
where V c is the molar volume of solid copper, and k is the jump potential that varies with the over-potential g
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kðgÞ ¼ k0 � k3g
3: ð10Þ
The rate of change of accelerator coverage h is partly due to adsorption and consumption. The conservation of
the accelerator in addition to adsorption from the electrolyte and consumption by the deposited copper gives
dh
dt
þr � ðvhÞ ¼ J a � J d; ð11Þ
where the left hand side describes the conservation of the quantity h, and J a and J d are the fluxes due to
adsorption and consumption given by
J a ¼ kað1� hÞCi
m; J d ¼ kdh

q; q ¼ mgþ b; ð12Þ

where the rate constants ka and kd are potential-dependent and again determined by experiments [30] to be
ka ¼ k0 exp � aaF
RT

g

� �
; ð13Þ
and
kd ¼ Bd þ
A

expðBaðgþ V dÞÞ þ expðBbðgþ V dÞÞ
; ð14Þ
where A, Ba, Bb, Bd and V d are constant coefficients computed by fitting experimental results.
If we look back at Eqs. (1), (2) and (11) for the evolution of the accelerator coverage h, their differences lie

in the curvature-dependent term. We can rewrite the term vr � ðnhÞ as
vr � ðnhÞ ¼ vhr � nþ vrh � n ¼ vhjþrh � v;

from which we can see that the curvature j does indeed appear in all three equations, although we do not need
to compute j explicitly in Eq. (11) to solve this equation.

We also note that the term vr � ðnhÞ can be written as
vr � ðnhÞ ¼ r � ðvnhÞ � hn � rv ¼ r � ðvhÞ � h
ov
on
;

where ov
on vanishes if the velocity v is extended in a way such that v is constant along the normal direction, which

means that ov
on ¼ 0. Other extension choices would not make this term vanish, however we note that regardless

of the choice of extension, numerical round-off errors will still lead to a non-zero component.
A summary of constant parameters used in the numerical simulation is given in Table 1. The parameters are

empirically determined by performing experiments on planar surfaces and fitting the results [30].
Given the equations and parameters, our goal is to solve them one at a time in each of the following sec-

tions, starting from the level set equation for the moving interface discussed in the next section.

4. Numerical methods for solving the differential equations

4.1. Level set methods

To predict whether a void appears during the deposition process, it is necessary to track the interface
between deposited copper and the electrolyte. Given the initial position of this interface and the speed of prop-
agation at each point along the interface, we track the evolving interface using a level set method.

Level set methods, introduced in Osher and Sethian [31], are numerical methods for tracking moving inter-
faces: they rely in part on the theory of curve and surface evolution given by Sethian in [34,35] and on the link
between front propagation and hyperbolic conservation laws discussed in [36]. These techniques recast inter-
face motion as a time-dependent Eulerian initial value partial differential equation.

The equation of motion for the evolving level set function / is given by
/t þ F jr/j þ u � r/ ¼ 0 ð15Þ
given /ðx; t ¼ 0Þ ¼ �d; ð16Þ



Table 1
A list of some of the parameters

Parameter Value Unit

b0 0.69 A/m2

b1 6.4 A/m2

m0 0.447 –
m1 0.299 –
X 7.1e�6 m3/mol
Dc 4e�10 m2/s
Dm 4e�10 m2/s
V c 14100 mol/m3

m 4 V�1

b 2.65 –
C0 6.35e�6 mol/m2

F 96485 C/mol
R 8.314 J/K mol
T 298 K
h 9.2e�7 m
w 5e�7 m
d 1e�6 m
g �0.25 V
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where F is the speed of propagation in the normal direction, u is the advection velocity, and �d is the signed
distance from a given point x to the initial interface. For a general introduction and overview, see [37].

Level set methods have been extended to solve material transport problems by Adalsteinsson and Sethian in
[3], see also [46]. In this paper, we shall also develop such methods but follow a different approach, leading to a
conservative numerical scheme for the key variables.

4.2. Material transport and conservation laws

The electrodeposition process was originally modeled using the leveling theory, which failed to explain the
superfilling phenomenon [29,42]. Later, the CEAC mechanism was proposed, and has been shown to be able
to model the superconformal film growth better than the leveling theory. Superfilling is caused by the fact that
the growth rate of copper is proportional to the accelerator coverage, while the rate of buildup of the accel-
erator scales with the local curvature j. We will show that this can be explained more precisely by examining
the role of conservation laws.

Given a short segment of the interface, the total amount of a scalar (or the integral of the scalar) is con-
served when the interface moves. Consider a segment at the concave part of the trench. When the interface
moves into the electrolyte, the length of this tiny segment decreases. For the integral of the scalar to be con-
served, its point-wise value has to increase. The opposite is true for the convex case where the length of a seg-
ment increases as the interface moves into the electrolyte.

More specifically, we consider a closed curve moving in the xy-plane with a scalar quantity GðuÞ defined
along this curve, as shown in Fig. 3. The interface is advected under the velocity field u ¼ ðu; vÞ, which can
be defined either along the front only or in the whole domain.

4.2.1. Derivation of interface material transport in conservation form

We assume that the advection velocity depends on time and position for simplicity of the equations in our
proof. With L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

x þ /2
y

q
, we have the following lemma.

Lemma 1
ðLGÞt þ ðuLGÞx þ ðvLGÞy ¼ 0: ð17Þ
Proof. Consider a parameterized curve CðsÞ ¼ ðaðsÞ;bðsÞÞ where s 2 ½0; 1� and Cð0Þ ¼ Cð1Þ at time t0. Let the
curve propagate under the speed functions ðu; vÞ for a small time t. Then points along the interface satisfy:
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Fig. 3. Moving interface in 2D from time t0 to time t. The closed curve is parameterized as ðx; yÞ ¼ ðaðsÞ; bðsÞÞ.
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xðs; tÞ ¼ aðsÞ þ
Z t

t0

uðxðs; sÞ; yðs; sÞ; sÞds;

yðs; tÞ ¼ bðsÞ þ
Z t

t0

vðxðs; sÞ; yðs; sÞ; sÞds:
Taking the derivative of ðx; yÞ with respect to s and omitting ðs; tÞ and ðs; sÞ, we have
xs ¼ as þ
Z t

t0

ðux � xs þ uy � ysÞds;

ys ¼ bs þ
Z t

t0

ðvx � xs þ vy � ysÞds:
Define CðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

s ðtÞ þ y2
s ðtÞ

p
, which measures the length of the tangent vector along the interface at time t.

Then
CðtÞ2 ¼ x2
s þ y2

s

¼ a2
s þ b2

s þ 2 as

Z t

t0

ðuxxs þ uyysÞdsþ bs

Z t

t0

ðvxxs þ vyysÞds

� �
þ

Z t

t0

ðuxxs þ uyysÞds

� �2

þ
Z t

t0

ðvxxs þ vyysÞds

� �2

:

To get the scaling of the length, we take the time derivative of CðtÞ2. Noting that xsðs; t0Þ ¼ asðsÞ,
ysðs; t0Þ ¼ bsðsÞ, the differentiation yields
d

dt
ðCðtÞÞ2 ¼ 2xsðt0ÞðuxxsðtÞ þ uyysðtÞÞ þ 2ysðt0ÞðvxxsðtÞ þ vyysðtÞÞ þ 2

Z t

t0

ðuxxs þ uyysÞds

� �
ðuxxsðtÞ

þ uyysðtÞÞ þ 2

Z t

t0

ðvxxs þ vyysÞds

� �
ðvxxsðtÞ þ vyysðtÞÞ:
Taking the limit as t! t0, we have
Cðt0Þ
dCðt0Þ

dt
¼ xsðt0Þðuxxsðt0Þ þ uyysðt0ÞÞ þ ysðt0Þðvxxsðt0Þ þ vyysðt0ÞÞ:
The conservation of the quantity CG implies that
Cðt; sÞGðt; x0 þ uðt � t0Þ; y0 þ vðt � t0ÞÞ ¼ Cðt0; sÞGðt0; x0; y0Þ:

Thus, we have
d

dt
Gðt; x0 þ uðt � t0Þ; y0 þ vðt � t0ÞÞ

Gðt0; x0; y0Þ

� �
¼ d

dt
Cðt0; sÞ
Cðt; sÞ

� �
¼ �

Cðt0; sÞ dCðt;sÞ
dt

Cðt; sÞ2
:
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If we evaluate everything at time t0, since ðnx; nyÞ ¼ ðys;�xsÞffiffiffiffiffiffiffiffiffi
x2

sþy2
s

p , we then have !

ðGt þ uGx þ vGyÞjðt0;x0;y0Þ ¼ Gðt0; x0; y0Þ �

Cðt0; sÞ dCðt0;sÞ
dt

Cðt0; sÞ2
¼ �Gðt0; x0; y0Þ

uxx2
s þ uyxsys þ vxxsys þ vyy2

s

x2
s þ y2

s

¼ �Gðt0; x0; y0Þðuxn2
y � ðuy þ vxÞnxny þ vyn2

xÞ:
t0, x0 and y0 are arbitrary. Thus
Gtðx; y; tÞ ¼ �ðu; vÞ � rG� ðn2
y ux � nxnyðuy þ vxÞ þ n2

xvyÞG;
where the first term comes from advection, and the second from local compression/expansion.
Using the fact that L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

x þ /2
y

q
, Eq. (17) is equivalent to its expansion
LGt � G
u/x/xx þ ðu/y þ v/xÞ/xy þ v/y/yy

L
� G

ux/
2
x þ ðvx þ uyÞ/y/x þ vy/

2
y

L

þ uxLGþ u
/x/xx þ /y/xy

L
Gþ uLGx þ vxLGþ v

/y/yy þ /x/xy

L
Gþ vLGy ¼ 0;
which simplifies to
Gt � G
ux/

2
x þ ðvx þ uyÞ/y/x þ vy/

2
y

L2
þ uxGþ uGx þ vyGþ vGy ¼ 0:
Since ðnx; nyÞ ¼
ð/x;/y Þ

L , we can prove Eq. (17) by substituting nx and ny . h

Assume that in addition to advection, the curve propagates with normal speed F. The propagation can be
thought of as advection under velocity field ðFnx; FnyÞ. Thus, we only need to replace ðu; vÞ in Eq. (17) with
u ¼ uadv þ Fnx; v ¼ vadv þ Fny :
Eq. (17) can be generalized to the n-dimensional case in the following form:
ðLGÞt þr � ðLGuÞ ¼ 0; ð18Þ

where u ¼ ðu1; . . . ; unÞ; ui ¼ ui

adv þ Fni for 1 6 i 6 n.
Maintaining the signed distance function implies that we always have that L ¼ jr/j is approximately equal

to 1, and Eq. (18) simplifies to
Gt þr � ðGuÞ ¼ 0:
4.2.2. Conservation laws and numerical scheme

Eq. (17) is in the form of a hyperbolic conservation law: a simple numerical scheme that obeys conservation
form is given by the Lax–Friedrichs method
unþ1
j ¼

un
j�1 þ un

jþ1

2
� k

f ðun
jþ1Þ � f ðun

j�1Þ
2

ð19Þ
where k ¼ dt
dx.

To produce a scheme that is second-order in space and time, we start with a general form
Hnþ1
ij � Hn

ij ¼ �kxðUði; iþ 1Þ � Uði� 1; iÞÞ � kyðV ðj; jþ 1Þ � V ðj� 1; jÞÞ; ð20Þ
where H ¼ LG; kx ¼ dt
dx ; ky ¼ dt

dy. A Taylor’s expansion of Hðt þ DtÞ gives
Uði; iþ 1Þ ¼ uijH ij þ uiþ1;jH iþ1;j

2
þ dt

u0ijH ij þ u0iþ1;jH iþ1;j

4
� kx

ðuij þ uiþ1;jÞðuiþ1;jH iþ1;j � uijHijÞ
4

� ky

8
½uijðvi;jþ1Hi;jþ1 � vi;j�1Hi;j�1Þ þ uiþ1;jðviþ1;jþ1H iþ1;jþ1 � viþ1;j�1H iþ1;j�1Þ�;
where ð�Þ0 is the time derivative, and Uði� 1; iÞ; V ðj; jþ 1Þ; V ðj� 1; jÞ are defined by analogous formulas.
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A first-order approximation of u0 is enough for the whole scheme to be second-order, and we take un�1�un�2

dt to
approximate u0. We do not use un�un�1

dt , because our speed functions may depend on G, which means Gn is some-
times needed to compute un, and we would prefer to avoid an implicit formulation.

During the first step, since u0 is not available, we simply take u0 ¼ 0. The first step itself is then only first-
order (local truncation error is second-order). But this does not affect the second-order accuracy of the entire
procedure, as this happens only once.

4.2.3. Other implementation issues

We use the narrow band level set method, as first introduced in [1].
With the source term included in Eq. (11), we apply an operator splitting technique for each time step [14].

Let At � h0 be the solution to
ht þ ðuhÞx þ ðvhÞy ¼ 0; hðt ¼ 0Þ ¼ h0;
and St � h0 be the solution to
ht ¼ J aðhÞ � J dðhÞ; hðt ¼ 0Þ ¼ h0;
at time t, then we can update h by
hnþ1 ¼ SDt � ðADt � hnÞ;

where ADt is computed using the conservative scheme explained above and SDt is simply defined as
SDt � h ¼ hþ DtðJ aðhÞ � J dðhÞÞ:
4.2.4. Numerical tests

In this section, we test the numerical schemes to demonstrate convergence and second-order accuracy. To
do so, we solve a problem with known exact solution. Consider a test case (given in [3]) in which we have an
ellipse with the origin as its center and major axes 0.3 and 0.4. The ellipse is rotating around its center; equiv-
alently, for each point ðx; yÞ on the interface, it moves with speed u ¼ ð�y; xÞ. The scalar value G is chosen to
be (see Fig. 4)
G0ðx; yÞ ¼ x2 þ y2 � xyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p þ 0:1: ð21Þ
We test our numerical algorithm with four different mesh sizes: n ¼ 122, n ¼ 182, n ¼ 242 and n ¼ 362. The
errors are computed by subtracting the numerical solution interpolated from the grid points to the interface
and the exact solution on 1000 evenly distributed points. We compute both the 2-norm and the1-norm errors
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Fig. 4. The interface and the exact solution.
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(see Figs. 5 and 6). If we use straight lines to interpolate the two sets of points, the slopes of the lines are �2.13
and �2.16 respectively, which means that the order of accuracy is approximately 2.

4.3. Diffusion equation on an irregular domain with moving interface

In this section, we consider the diffusion equation
ut ¼ bDu ð22Þ

in a two-dimensional region XðtÞþ, with mixed boundary condition
b
ou
on
þ au ¼ gðx; tÞ on C ¼ oXðtÞþ: ð23Þ
Cartesian grid finite difference methods are problematic for handling such boundary conditions on irregular,
moving interfaces. The difficulty is that first-order one-sided difference approximations to the normal deriva-
tives close to the interface, combined with a standard five-point stencil scheme for the Laplacian at regular
interior points, are only first-order accurate, while second-order approximations to the derivative yield desired
100 200 300 400
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Fig. 5. 2-Norm error vs. mesh size.
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Fig. 6. 1-Norm error vs. mesh size.
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accuracy at the cost of using either a wide difference stencil or grid points from the other side. Another prob-
lem which results from the moving interface is that an outward motion from XðtÞþ to Xðt þ dtÞþ, where
XðtÞþ � Xðt þ dtÞþ, requires the estimation of values of uðtÞ defined on Xðt þ dtÞþ � XðtÞþ to update from
uðtÞ to uðt þ dtÞ.

4.3.1. Immersed interface methods

We will embed the irregular domain in a larger rectangular domain, with the partial differential equations
extended to the rectangular domain correspondingly by introducing jump conditions across the interface, and
then apply the immersed interface method to the rectangular domain. From now on, we will use u to denote
both the numerical solution and the analytical solution for simplicity.

To embed Eqs. (22) and (23) into the larger rectangular domain, we would like to impose the jump
conditions
Fig.
½u� � uþ � u� ¼ 0 ð24Þ

and
½Du� � ðDuÞþ � ðDuÞ� ¼ 0 ð25Þ

so that Eq. (22) holds in the domain X ¼ Xþ [ X�. The boundary condition given by Eq. (23) can be rewritten
as
b
ouþ

on
þ auþ ¼ g: ð26Þ
Consider the grid point x5 as shown in Fig. 7. We label points (like x5) with neighbors on the other side of the
interface as ‘‘irregular points”. Let x	 be the closest point on C to x5. Applying the immersed interface method
(see [22,23]) to Eq. (22) with jump conditions given in Eqs. (24)–(26) leads to a local linear system for x5:
X
k2Kþ

1� a
b

nk �
a
b

� �0
nkgk þ

v00

2

a
b
ðg2

k � n2
kÞ

� �
ck þ

X
k2K�

ck ¼ 0; ð27Þ

X
k2Kþ

v00

2
ðg2

k � n2
kÞck þ

X
k2K�

nkck ¼ 0; ð28Þ

X
k2Kþ

gk þ v00 � a
b

� �
nkgk

� �
ck þ

X
k2K�

gkck ¼ 0; ð29Þ
X
k2Kþ

n2
kck þ

X
k2K�

n2
kck ¼ 2; ð30Þ

X
k2K�

nkgkck ¼ 0; ð31Þ
X
k2Kþ

g2
kck þ

X
k2K�

g2
kck ¼ 2; ð32Þ
x

Ω- +

ih, jh(         )

Γ

x*

η

ξ
5
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Ω

7. x5 is an irregular point with one of its neighbors on the other side of the interface. x	 is its closest point on the interface C.
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where fckg is the set of unknown coefficients, Kþ and K� are a partition of the nine-point stencil which are the
indices of those points that are in Xþ [ C and X� respectively, ðnk; gkÞ are the coordinates for xk in the local
coordinate system, n ¼ vðgÞ is the local representation of the interface, and v00 is the curvature evaluated at x	.
Then the Laplacian is approximated as
Du 

X
k2Kþ

ckuðxkÞ þ
X
k2K�

ckuðxkÞ � C;
where
C ¼
X
k2Kþ

ck
g
b

nk �
1

2
v00ðg2

k � n2
kÞ

� �
þ g

b

� �0
nkgk

� �
:

4.3.2. Stencil reduction

The next goal is to determine which six points one should choose out of the nine-point stencil. As a pre-
liminary, if we look at Eqs. (27)–(32) carefully, we find out that if we multiply Eq. (30) by 1

2
v00 and Eq. (32)

by � 1
2
v00 and add them to Eq. (28), we have
X

k2K�
nk þ

1

2
v00ðg2

k � n2
kÞ

� �
ck ¼ 0: ð33Þ
This can be used to replace Eq. (28). We observe that both Eqs. (31) and (33) have nonzero terms only for grid
points in X�. Therefore, if there are exactly two exterior points in the six-point stencil we choose, the coeffi-
cients of these two grid points are zero, and we only need solve the four Eqs. (27), (29), (30) and (32) for the
coefficients for the four chosen interior points.

This observation not only reduces a 6� 6 linear system to a 4� 4 system, it saves a considerable amount of
computation time, assuming that we are able to choose a stencil with exactly four interior grid points and two
exterior points for each interior irregular point. In such cases, for each irregular point, we have a 4� 4 linear
system only involving interior points. We also know that the standard five-point stencil for any regular points
consists of interior points only. Based on these two observations, and under the assumption of the existence
of four interior points and two exterior points, what happens to the exterior points is irrelevant. The interior part
can be solved independent of the exterior, though the values of the exterior points depend on the interior. Con-
sider a unit circle embedded in a square region with side length 2. Then with an N � N discretization, the assem-
bled linear system we need to solve has size about p

16
N 2 instead of N 2, which is a significant improvement.

4.3.3. Stencil selection for high-curvature interfaces
The above discussion is based on the assumption that for each interior irregular point, there exists a six-

point stencil with four interior points and two exterior points. Unfortunately, this is not always true. For
example, situations shown in Figs. 8 and 9 are possible. Most significantly, this happens in our electrodepos-
ition problem when sharp corners arise at the bottom of the trench.

We do not want to add exterior grid points into the set of interior points and solve for them. If we add one
exterior point, we also need to add its neighbors due to the dependency. Similarly the neighbors’ neighbors
should be added as well. If we choose this approach, we are soon required to solve the full linear system
defined in the whole domain X ¼ Xþ [ X� instead of the reduced system in Xþ. A similar approach is in [7].
Fig. 8. An irregular point with three interior neighbors.



Fig. 9. An irregular point with two interior neighbors.
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Instead, if we reexamine the procedure by which we deduce the six equations for the coefficients fckg, we
will see that nowhere do we assume that xk’s need be grid points. With this observation, if an interior irregular
point has (including itself) less than four interior neighbors, we can just pick some arbitrary points which lie in
Xþ so that we have four interior points in total, and we are then able to compute the four equations they sat-
isfy. The complication with this approach is that we are in fact introducing new points into the existing system,
and they require corresponding equations.

These equations can be determined if the additional points are carefully chosen. Consider an interior irreg-
ular point that has only three interior neighbors including itself, as shown in Fig. 10. We can find its neighbor
closest to the interface among all the exterior neighbors, then attach to this exterior point the information of
its closest point to the interface, and use the local coordinates of this closest point to compute the coefficients
for the 4� 4 or 6� 6 linear system. This new point is counted as an interior point and all the information we
need about it are its local coordinates.

In some cases, the corresponding exterior point already has four interior neighbors from which we can com-
pute the four equations. If this is not true, we perform the above procedure once more to this new point. The
worst case situation occurs when there is a thin tube with width less than one grid cell. Unlike the previous
idea, this procedure of adding new points will not keep going forever even in this worst case. It terminates
with at most one layer of new grid points as shown in Fig. 11, where � are interior points, � are exterior points
that have been added into the unknown set, and � are exterior points that will not be used to solve for the
linear system. We can see that each interior and newly added points has (including itself) at least four neigh-
bors which are interior points or newly added points.

To implement this algorithm, we first loop through all the interior points. For each irregular interior point
with less than four interior neighbors, we add some exterior points into the set and treat them as interior points.
For any of these points that has less than four interior neighbors, we add more points into the set recursively.
After the loop, each interior irregular point should have at least four interior neighbors. Therefore, we can com-
pute the 4� 4 matrix for each irregular point, solve for the coefficients, and assemble the big matrix.

4.3.4. Linear programming and least squares in stencil selection

In contrast to what was discussed in the last section, sometimes an irregular point can have more than four
interior neighbors. In this case, the simplest thing we can do is to choose four points randomly. The question
is: are there better ways to do it?

Different stencil leads to different assembled matrices, some of which are much more ill-conditioned than
others. Our goal is to make the big matrix good-conditioned, or more advantageously, a diagonally dominant
matrix, so that an iterative solver used to solve the linear system converges fast.
1

2 3
4

4'

Fig. 10. Replacing an exterior neighbor x4 with the closest point x04.
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Fig. 11. Adding exterior points into the unknown set.
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One way to select such a stencil is via an associated linear programming problem. Assume that fckg is the
set of coefficients, and that k ¼ 1 corresponds to the center of the nine-point stencil. We then want to solve:
max jc1j �
X
k 6¼1

jckj

s:t:
X

j

cijcj ¼ bi; 1 6 i 6 4:
ð34Þ
For a regular point, the coefficients are c1 ¼ �4 and ck ¼ 1 for k 6¼ 1. Therefore we would like to impose the
conditions c1 6 0 and ck P 0; k 6¼ 1, and the optimization problem (34) simplifies to
max �c1 �
P
k 6¼1

ck

s:t: c1 6 0;

ck P 0; k 6¼ 1P
j

cijcj ¼ bi; 1 6 i 6 4:

ð35Þ
The objective function tries to make the matrix as close as possible to be diagonally dominant, and the equal-
ity constraints are the four equations satisfied by the coefficients fckg. This approach was also discussed in
[24,45].

The optimization problem (35) does not always have a solution. If the solution does not exist (sometimes
the inequality and equality constraints cannot be satisfied all at the same time), we switch to solving the least
square problem given by
min
P

j
c2

j

s:t:
P

j
cijcj ¼ bi; 1 6 i 6 4:

ð36Þ
The advantage of solving the above additional optimization problem is that it makes solving the whole linear
system with an iterative solver easier. For example, if we use Gauss–Seidel as the iterative solver to solve the
linear system Ax ¼ b, the convergence rate is related to the magnitude of
jjM jj ¼ jjðDþ LÞ�1U jj;
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where D; L and U represent the diagonal, strictly lower triangular, and strictly upper triangular parts of the
coefficient matrix A. The 2-norm of M is usually less than 1 if stencils are chosen based on the solutions of
the above optimization problems, while jjM jj2 can be as large as 100 if stencils are chosen randomly, making
it almost impossible for the iteration to converge.

4.3.5. Second-order extension of the solution

For our problem, the accelerator coverage h is updated in a narrow band around the moving interface
according to Eq. (11), where the source term J aðhÞ depends on Cm. Thus we need the concentration values
in this narrow band, instead of just on one side Xþ. Moreover, for other problems where the interface
moves outwards, it is possible that Xþðt þ dtÞ 6�XþðtÞ, that is, there exist points in Xþðt þ dtÞ that are
not in XþðtÞ. Therefore, we need to extend the concentration values from Xþ to X� at each time step.
A C2-extension is desired because the concentrations satisfy the diffusion equation with second-order
derivative terms (in fact, usually an arbitrary order extension can be made using the same mechanism
to be explained in this section). A second-order extension usually suffices; similar to polynomial interpo-
lation and extrapolation, extrapolated functions tend to be oscillating if higher order polynomials are
used.

The velocity extension mechanism associated with the level set method is explained in [2]. A C2-extension is
quite similar. Assume that we would like to extend u to the other side. First we make a continuous or C0-exten-
sion for the second-order normal derivative unn, followed by a C1-extension for the first-order normal deriv-
ative un using the values of unn, and then eventually a C2-extension for u using the values of un.

To be more specific, we first compute the value of un as
un ¼ ru � n ¼ ru � r/ ¼ ux/x þ uy/y ;
since the signed distance / is extended such that jr/j ¼ 1. The computation is performed on each point in Xþ

with all four neighbors in Xþ, since these four neighbors are needed to approximate ux and uy using central
differences. Similarly, we compute unn as
unn ¼ run � n ¼ ðunÞx/x þ ðunÞy/y ;
and we do this for points where the values of un have been computed already as above at all four neighbors.
With such values of unn and un available, we extend unn in the same manner as the way in which we extend the
velocity function according to runn � r/ ¼ 0
ðunnÞij ¼
ðunnÞi�1;j �

/ij�/i�1;j

dx2 þ ðunnÞi;j�1 �
/ij�/i;j�1

dy2

/ij�/i�1;j

dx2 þ /ij�/i;j�1

dy2

;

assuming that we are updating ði; jÞ from ði� 1; jÞ and ði; j� 1Þ. For un, we use a slightly modified equation
run � r/ ¼ unn
which can be verified to be a C1-extension. The corresponding difference equation is
ðunÞij ¼
unn þ ðunÞi�1;j �

/ij�/i�1;j

dx2 þ ðunÞi;j�1 �
/ij�/i;j�1

dy2

/ij�/i�1;j

dx2 þ /ij�/i;j�1

dy2

:

Similarly we can build a C2-extension for u:
uij ¼
un þ ui�1;j �

/ij�/i�1;j

dx2 þ ui;j�1 �
/ij�/i;j�1

dy2

/ij�/i�1;j

dx2 þ /ij�/i;j�1

dy2

:

We note that if we start from a continuous extension of ok u
onk, we can build a Ck-extension.

The computations of un and unn do not need to be performed at every point: they are needed only
within a very thin narrow band. For example, consider the interface in Fig. 12. We only need to compute
un at points marked as � which makes a band of bandwidth around 3 and then compute unn at points
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Fig. 12. The grid points that are involved in making a second-order extension.
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marked as � which makes a band of bandwidth about 1, since that is all we need to extend u to the other
side of the interface.

4.3.6. Numerical tests

In this section, we test our proposed methods by solving several problems numerically. For all the problems
in this section, we use the simplest form of the diffusion equation with the same exact solution, but defined on
different and possibly moving regions.

If we let
uðr; tÞ ¼ expð�tÞ �
X1
k¼0

ð�1Þk r2k

4kðk!Þ2
;

where r ¼ rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, then uðx; y; tÞ is an exact solution to the diffusion equation ut ¼ Du. For the

mixed boundary conditions, we can take an arbitrary function a and let g be defined as g ¼ ou
onþ au where n

is the unit normal pointing inwards, then
ou
on
þ au ¼ g
can be taken as the boundary condition. For example, we set a ¼ r2, and
g ¼ ou
on
þ au ¼ � ou

or
þ r2u ¼ expð�tÞ �

X1
k¼0

ð�1Þkþ1 r2kþ1ðk þ 1Þ
4k � 2 � ððk þ 1Þ!Þ2

þ
X1
k¼0

ð�1Þk r2kþ2

4kðk!Þ2

 !
:

Solving the diffusion equation on a nice, fixed domain: First we solve the diffusion equation on the unit disk with
the above boundary condition defined along the unit circle. The immersed interface method discussed in Sec-
tion 4.3.1 with Taylor expansion and appropriate stencil selection is used to solve the diffusion equation. The
numerical solution is shown in Fig. 13.

Solving the diffusion equation on a moving domain with large curvature: The second test is performed on an
origin-centered star-shaped region, which rotates around the origin. The star shape has very sharp corners at
some points, thus we may not be able to find four neighbor grid points on the same side of the interface for
each point. We then adopt the trick mentioned in Section 4.3.3 to deal with the problem. We still have the
same solution as before except that this time it is defined on a different region as in Fig. 15.

Solving the diffusion equation on an expanding domain: Lastly, we test on an expanding star shape. Since
XðtÞ � Xðt þ dtÞ for this test problem, we can verify correctness of our method for extension in Section
4.3.5 by comparing the numerical solution with the exact solution. The numerical solution is shown in Fig. 17.

For each of the three test cases, we compute the maximum norm errors in the desired domain for four dif-
ferent mesh sizes and make a plot of error versus mesh size. The plots are shown in Figs. 14, 16 and 18. The
slopes of the lines for the three test cases are approximately �1.99, �1.85 and �1.86 respectively, which verify
the second-order accuracy of our numerical scheme.
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Fig. 13. Solution on the unit disk with fixed interface.
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Fig. 14. Maximum error on the unit disk with fixed interface.
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Fig. 15. Solution on the rotating star shape.
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Fig. 16. Maximum error on the rotating star shape.
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Fig. 17. Solution on the expanding star shape.
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5. Solving large linear systems

Once we have a discrete approximation to the Laplacian operator, the differential equation (22) can be
solved by either an explicit scheme or an implicit scheme:
unþ1 � un

dt
¼ bDnu;

unþ1 � un

dt
¼ b

2
ðDnuþ Dnþ1uÞ; or

unþ1 � un

dt
¼ bDnþ1u; ð37Þ
where Dn and Dnþ1 are the approximations to the Laplacian computed from Section 4.3 at time tn and tnþ1

respectively.
If an explicit scheme is used to solve the diffusion equation, the time step size Dt and spatial step size Dx are

required to satisfy the CFL condition b Dt
Dx2 6 C for some constant C of magnitude 1 for the method to be sta-

ble. For our problem, we have Dx 
 10�8 and b 
 10�10. Thus we need to have Dt K 10�6 for stability. A phys-
ical deposition takes about 100 s to complete, which means that for our numerical calculation with time step
Dt K 10�6, 108 steps will be needed for the whole process. Assuming that computing one time step takes 0.01 s,
the whole process will take a total of 106 s, which is less than desirable.

However, if an implicit scheme is used, the numerical method for the diffusion equation is unconditionally
stable, and we can take Dt as large as we want, as long as the desired accuracy is achieved and the numerical
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Fig. 18. Maximum error on the expanding star shape.
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methods for other equations (especially the level set equation) are stable. Solving a differential equation with
an implicit scheme involves solving a large sparse linear system. For this deposition problem, the size of the
linear system is about 10,000–15,000 if we use a mesh of size 100� 200, and the coefficient matrix is not sym-
metric. We need to solve two such linear systems at each time step, one for the concentration of the copper and
one for the accelerator.

The second-order Crank–Nicolson method sounds appealing, but it causes oscillations in the numerical
solutions for our problem unless the time step is as small as Dx2. Moreover, even if we use a second-order accu-
rate method to solve diffusion equation, the overall method is at most first-order accurate: for each time step,
the differential equations (level set equations, conservation laws, and diffusion equations) are solved sequen-
tially without the use of any time splitting technique to make it second order.

We now consider both direct and iterative methods. For direct methods, one typically has two phases: sym-
bolic determination of the nonzero structure of the factors, and numeric factorization and solutions. If the
linear systems for different time steps have the same nonzero structure, then phase one needs to be performed
only once. This leads to a very efficient scheme for solving the linear systems.

In our problem, however, the boundary of the interface is moving. It crosses some grid points at each time
step, leading to a change in the structure of the coefficient matrix at such points. Moreover, we may want to
write out the linear system only on one side of the interface instead of the whole rectangular domain for effi-
ciency. In this case even the dimension of the linear system changes since the total number of points changes.

An iterative method starts with an initial guess, and its performance is closely related to the accuracy of the
initial guess and the convergence rate of the coefficient matrix. The concentration values at consecutive time
steps do not differ much, thus the solution from the last time step would be a good starting point. We can even
make an initial guess by extrapolating from the last two steps.

This section gives an efficient iterative multigrid method to solve a large linear system resulting from the
finite difference discretization of a differential equation on a rectangular mesh.

5.1. The basics of the multigrid method

The four basic components of multigrid methods are the smoothing, interpolation, and restriction opera-
tors, and the definitions of coarse grid problems (see [8,27]). We define these operators as follows:

Smoothing operator Sh: We use a variation of the red-black Gauss–Seidel iteration as the smoothing oper-
ator. As shown in Fig. 19, where we first update the points at the corner (�) which are also the coarse grid
points, followed by the points in the center (�), and then points on the vertical edge (M) and finally points



Fig. 19. Variation of red-black Gauss–Seidel.
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on the horizontal edge (�). Assume that the finite difference scheme is based on the standard nine-point sten-
cil. Since for each of the four sets, the update of one point is completely independent of the values of the points
in the same set, this ordering has a clear advantage in terms of parallel computation. Let the smoothing oper-
ator with mesh size h be Sh.

Interpolation operator Ih
2h: To interpolate from coarse grid values to fine mesh, we can use a linear interpo-

lation. In the one-dimensional case we have
uh
2i ¼ ðIh

2hu2hÞ2i ¼ u2h
i ;

uh
2iþ1 ¼ ðIh

2hu2hÞ2iþ1 ¼
1

2
ðu2h

i þ u2h
iþ1Þ;
and for two-dimensional problems,
uh
2i;2j ¼ ðIh

2hu2hÞ2i;2j ¼ u2h
ij ;

uh
2iþ1;2j ¼ ðIh

2hu2hÞ2iþ1;2j ¼
1

2
ðu2h

ij þ u2h
iþ1;jÞ;

uh
2i;2jþ1 ¼ ðIh

2hu2hÞ2i;2jþ1 ¼
1

2
ðu2h

ij þ u2h
i;jþ1Þ;

uh
2iþ1;2jþ1 ¼ ðIh

2hu2hÞ2iþ1;2jþ1 ¼
1

4
ðu2h

ij þ u2h
iþ1;j þ u2h

i;jþ1 þ u2h
iþ1;jþ1Þ:
Restriction operator R2h
h : Two straightforward ways to project the solution from the fine mesh (with mesh

size h) to the coarse mesh (with mesh size 2h) are to use a weighted average of the values at neighboring fine
mesh points, or to simply use the value at the same grid point. However, for a coarse grid point next to the
interface, not all its neighboring fine mesh points are easily available. Therefore we adopt the second choice.

Coarse grid problem: Still yet to be determined is the coarse grid problem. We are given only the information to
solve for the finest grid in the form of Ahuh ¼ f h where Ah and f h are known, and uh is to be solved. Similarly the
coarse grid problem can be written as A2hu2h ¼ f 2h, and one commonly used way to define the problem is
A2h ¼ R2h
h AhIh

2h; and f 2h ¼ R2h
h f h;
where the first equation is called the Galerkin condition.
With the smoothing, restriction, interpolation and coarse-grid operators defined as above, a family of mul-

tigrid cycling schemes called the l-cycle method is given in [8]. We usually set either l ¼ 1 (called the V-cycle
multigrid) or l ¼ 2 (called the W-cycle multigrid), and the numbers of smoothing steps m1 and m2 seldom
exceed 3. To apply this multigrid algorithm to our deposition problem, three things should be noted.

First, we have a constant Dirichlet boundary condition at the top of the whole rectangular region, and the
concentration values at points that are far away from the interface are not likely to change much across dif-
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ferent time steps, compared with points close to the interface. To save the workload further, we may not have
to perform the smoothing step for each point in the rectangular domain or Xþ. Instead, consider a total of
three levels. We can carry out the procedure on the finest level mesh for points in a band around the interface,
and for the second level, we do it on a thicker band which contains the band for the first level. We only update
all the points for the coarsest level, as shown in Fig. 21 for the interface given in Fig. 20.
Fig. 21. Adaptive mesh corresponding to a given interface.

Fig. 20. Some arbitrary interface position.
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Second, the unknown variables are the concentrations of copper and the accelerator, which are defined only
on one side of the interface Xþ, an irregular domain. Thus we may not know how to write the equations for
points in X� that are on the other side, especially for points near the interface. Even if the equations are avail-
able to us, we would prefer to solve only in Xþ as mentioned before for efficiency.

Finally, the interpolation operator defined above is based on an underlying assumption that the solution (or
the error) is smooth, which is seldom true for any interface problem. We will use instead an ‘‘operator-
induced” interpolator which is explained in detail in later sections.

5.2. Adaptive one-sided multigrid

The basic idea of the adaptive multigrid method is to use a finer mesh where more accurate solutions are
desired. For most interface problems, due to mixed boundary conditions on the interface or jump conditions
across the interface, we seek more accurate solutions near the interface where accuracy is required and where
more significant changes in the solutions of consecutive time steps will occur, compared with regions further
from the interface. This reduces the workload considerably since we only need to do smoothing, a major com-
putation part in the whole multigrid algorithm, at the finest level in a thin narrow band around the interface,
rather than throughout the whole domain.

The way we use to generate adaptive mesh is to first assign value to a variable bw, which is the bandwidth,
and then loop through the coarsest level to the second-finest level. Assume that the current level has mesh size
h. For each regular cell in this level, if the distance between all the four corners (eight corners for three-dimen-
sional problem) and the interface di satisfies di < h � bw, we split the cell into four smaller cells, which are taken
as regular cells for the next finer level. For example, given the interface in Fig. 20 with bw ¼ 3 and four levels
in total, the adaptive mesh looks like Fig. 21.

To switch from the original non-adaptive multigrid to the adaptive multigrid scheme, everything is the
same, except that we cannot do the same thing for the interpolation operator for points which lie between dif-
ferent levels of meshes, for example, P in Fig. 22. Here, we need an alternative approach to transfer between
coarse and fine meshes for such points.

The rest of the section explains how we map from fine mesh to coarse mesh and vice versa in addition to the
smoothing operator. We need to pay attention to the domains and ranges of the mappings, especially across
the boundary between coarse and fine mesh. The details of the algorithm are given at the end of this section.

Now consider two levels for simplicity. Similar to the Fast Adaptive Composite Grid Method (FAC) [27],
we divide the points into four groups and add a set of imaginary points as in Fig. 23. The fine mesh points with
all neighbors being fine mesh points are the first group (�); the remaining fine mesh points are the second
group (�); we add two more layers of imaginary fine mesh points with the first layer being the third group
(M) and the second layer being the fourth group (�); the remaining coarse mesh points are the last group
(I). In groups 1, 2 and 4, some points can be either fine mesh points or coarse mesh points. We use upper
indices to differentiate: �h is for fine mesh points, and �2h is for coarse mesh points.

Now consider the points in �h. We cannot perform the smoothing step on them as mentioned above since
some of their neighbors do not exist. Therefore, the original multigrid algorithm needs to be revised. We store
the fine mesh solution values uh for all the grid points that are in �h [ �h [ Mh [ �h and the coarse mesh solu-
tion values u2h for points in �h [ �h [ �h [I

h. For the fine mesh, the smoothing step is only performed on
points in �h, and solutions at the remaining mesh grid points, i.e., those in �h [ Mh [ �h, are interpolated from
coarse grid solutions.
P

Fig. 22. A point with two different levels of neighbors.



Fig. 23. Grid points divided into several groups.
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The domain and range of the restriction and interpolation operators are specified as:
R2h
h : Mh [ �h [ �h ! �2h [ �2h; and Ih

2h : �2h [ �2h [ �2h ! �h [ �h [ Mh [ �h;
and the coefficient operator for level h is given by
Ah : �h [ �h ! �h:
Written in matrix form, Ah has dimension ðN h þ mhÞ � ðNhÞ, where Nh and mh are the number of points clas-
sified as �h and �h respectively. Ah is not a square matrix anymore, because we must use points in �h in the
smoothing step to update a point in �h with one of its neighbors in �h. Correspondingly, f h is a vector of size
ðN h þ 2Þ. To compute the entries of A2h, we still use the Galerkin condition A2h ¼ R2h

h AhIh
2h for points in the

domain of Ih
2h, and we will compute the entries of A2h elsewhere from the discretization of the partial differen-

tial equation since no information about Ah is available there. The solutions uh at all levels need to be recorded,
and the same is true for f h. We use another vector vh to record the solution at the finest level and the residual
at all other levels.

With all of the above, the multigrid scheme is modified as follows:

Compute the operators R2h
h , Ih

2h and Ah for each level in matrix form as above. Find an initial guess uh and let
f h  f h � Ahuh for each level.vh  AMhðvh; f hÞ :

1. Smoothing: repeat vh  ShðAh; f h; vhÞ m1 times for points in �h.
2. Compute the residual rh  f h � Ahvh in �h [ �h [ Mh; transfer it to the coarse mesh f 2h  R2h

h rh in �2h [ �2h.
3. If 2h is the coarsest level, direct solve v2h  DSðA2h; f 2hÞ, else v2h  0; v2h  AM2hðv2h; f 2hÞ.
4. f 2h  f 2h � A2hv2h in I

2h [ �2h.
5. Update coarse approximation for all coarse points: u2h  u2h þ v2h.
6. Interpolate correction and update approximation for all fine points: vh  vh þ Ih

2hv2h.

Finally, if we are close to the interface, we discretize the partial differential equation, choose the stencil and
add new points following the procedure described in Section 4.3: this multigrid scheme can be easily turned
into a one-sided scheme.

5.3. Operator-induced interpolation operator

A problem with the multigrid method is that it has to be specifically designed, or at least coded for each
problem due to different grid configurations, especially for interface problems with various irregular bound-
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aries, since the interpolation operator cannot be defined in the same way as before near the interface. In this
section we discuss a particular choice of interpolation operators based on the fine grid operator. This is called
operator-induced coarsening [5,10].

This problem does not exist for the smoothing and restriction operators. The smoothing step is completely
determined by the coefficient matrix and the right hand side. Once they are computed, we can perform the
smoothing step regardless of the shape of the domain and the grid structure. For the restriction part, we sim-
ply use the fine grid value for the coarse value at the same grid points.

Let Ahuh ¼ f h be the linear system for the fine mesh. For each grid point, we look at its nine-point stencil as
shown in Fig. 24. The equation for the unknown centered at x5 is
a1u1 þ a2u2 þ a3u3 þ a4u4 þ a5u5 þ a6u6 þ a7u7 þ a8u8 þ a9u9 ¼ f5:
Our adaptive multigrid scheme is applied to the error (or the residual) which satisfies a similar equation:
a1e1 þ a2e2 þ a3e3 þ a4e4 þ a5e5 þ a6e6 þ a7e7 þ a8e8 þ a9e9 ¼ r5 
 0: ð38Þ

Given the above equation and the values of the error e2h at coarse mesh points, we need to interpolate
eh ¼ Ih

2he2h at each fine grid point.
First we consider the case where x5 is a regular point, that is, all the nine points are in Xþ. Assume that x5 is

also a coarse grid point, then we can simply take the coarse grid error at this point to be the ‘‘interpolated” fine
value.

Now we consider the case where x5 is on a vertical cell edge, that is, x2 and x8 are the coarse grid points. We
want to express the error as
e5 ¼ c2e2 þ c8e8;
where c2 and c8 are coefficients yet to be determined. Since only e2, e5 and e8 appear in this equation, we use
Taylor expansion for all the nine points and express them in terms of these three:
e1 
 e2; e3 
 e2; e4 
 e5; e6 
 e5; e9 
 e8:
Substituting into Eq. (38) leads to
c2 ¼ �
a1 þ a2 þ a3

a4 þ a5 þ a6

and c8 ¼ �
a7 þ a8 þ a9

a4 þ a5 þ a6

:

Similarly, if x5 is on a horizontal cell edge with coarse grid points x4 and x6, we can interpolate the error on the
fine mesh as
e5 ¼ c4e4 þ c6e6;
where
c4 ¼ �
a1 þ a4 þ a7

a2 þ a5 þ a8

and c6 ¼ �
a3 þ a6 þ a9

a2 þ a5 þ a8

:

If x5 is the center of a cell, we first compute all the other eight error values and then substitute them into Eq.
(38) to compute e5.
1

4

7 9

2 3

5 6

8

x x x

x x x

xx x

Fig. 24. The nine-point stencil.
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If x5 is an irregular point, it may have some coarse grid neighbors on the other side of the interface, and they
cannot be used to interpolate for the value of e5. Since we have the boundary condition as given in (23), we can
simply assume that the error satisfies the homogeneous version of the condition
b
oe
on
þ ae ¼ 0 on C ¼ oXðtÞþ;
or even simpler, that the discrete error on the other side of the interface is 0. Then we slightly modify the inter-
polation operator for regular points, with all the coefficients corresponding to points in X� set to 0, to get the
interpolation operator for irregular points. For example, in Fig. 25’s case, we have
e5 ¼ c2e2 þ c8e8;
where
c2 ¼ �
a2 þ a3

a5 þ a6

and c8 ¼ �
a8 þ a9

a5 þ a6

:

a1, a4 and a7 are gone since they correspond to points in X�.
This way of treating irregular points works for our problem, where the boundary condition is in the form of

(23). For problems with jump conditions, this is somewhat different (see [4]).

5.4. Convergence

The underlying steps we use to update the solution in the multigrid method is the Gauss–Seidel iteration. A
necessary and sufficient condition for Gauss–Seidel iteration to converge for a specific class of matrices is given
in [12]: if the matrix has a sign structure such that in each line, the sign of the diagonal element is opposite to
the sign of all other elements, then a criterion called the generalized line criterion (GLC) is necessary and suf-
ficient for Gauss–Seidel iteration to converge. We can verify numerically that for some steps, especially when
the curvature gets very large at some point, the GLC is not satisfied. In that case, we switch to a direct solver
(SuperLU [11], for example). We start with the iterative method and record the relative magnitude of the
update for the solution. If it exceeds a given constant, we switch to the direct method.

6. Extension to three-dimensional case

Most of the above discussion can be easily extended to three dimensions. However, certain aspects need to
be treated carefully. First we need to find a new local orthogonal coordinate system ðn; g1; g2Þ centered at a
given point x	 on the interface.

The second-order structure of a surface is characterized by a quadratic patch that shares first- and second-
order contact with the surface at a point. The principal directions of the surface are those associated with the
quadratic approximation, and the principal curvatures j1; j2 are the curvatures in those directions. The prin-
cipal directions satisfy the properties that they are orthogonal to each other, and that they lie in the tangent
plane of the surface at the point. Therefore, ðn; g1; g2Þ, where n is the normal direction and g1; g2 are the prin-
cipal directions, is an orthogonal system and we can take it as our local coordinate system.
2 3

5 6

8 9

x x

x x

xx

Ω-
+Ω

Fig. 25. Interpolation from coarse grid points (x2 and x8) to fine grid point (x5).
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Assume that the surface is locally expressed as n ¼ vðg1; g2Þ. Denote ov
ogj
¼ vj and o2v

ogjogk
¼ vjk for j; k ¼ 1; 2.

Then vð0; 0Þ ¼ v1ð0; 0Þ ¼ v2ð0; 0Þ ¼ v12ð0; 0Þ ¼ 0 and v11ð0; 0Þ and v22ð0; 0Þ are the principal curvatures due to
our choice of the local coordinate system.

Similar to the two-dimensional case, we have the following 10 relationships:
uþ ¼ u�; ð39Þ
uþn vj þ uþgj

¼ u�n vj þ u�gj
; j ¼ 1; 2; ð40Þ

uþnnvjvk þ uþngk
vj þ uþn vjk þ uþngj

vk þ uþg1g2
¼ u�nnvjvk þ u�ngk

vj þ u�n vjk þ u�ngj
vk þ u�g1g2

;

ðj; kÞ ¼ ð1; 1Þ; ð1; 2Þ; ð2; 2Þ; ð41Þ
uþnn þ uþg1g1

þ uþg2g2
¼ u�nn þ u�g1g1

þ u�g2g2
; ð42Þ

uþn � uþg1
v1 � uþg2

v2 þ
a
b

uþ ¼ ð1þ v2
1 þ v2

2Þ
1=2g

b
; ð43Þ

uþnnvj þ uþngj
� uþng1

v1vj � uþg1gj
v1 � uþg1

v1j � uþng2
v2vj � uþg2gj

v2 � uþg2
v2j þ

a
b

� �
j

uþ þ a
b
ðuþn vj þ uþgj

Þ

¼ o

ogj
ð1þ v2

1 þ v2
2Þ

1=2 g
b

� �
; j ¼ 1; 2: ð44Þ
Eqs. (40)–(43) are derived from continuity across the interface of the quantities u, unvj þ ugj
, unnvjvk þ ungk

vjþ
unvjk þ ungj

vk þ ugjgk
and unn þ ug1g1

þ ug2g2
, and the rest are derived from the boundary condition.

These equations are evaluated at g1 ¼ g2 ¼ 0. Since we have chosen a local coordinate system such that
vð0; 0Þ ¼ v1ð0; 0Þ ¼ v2ð0; 0Þ ¼ v12ð0; 0Þ ¼ 0, they can be simplified to the matrix form
AþUþ ¼ A�U� þ G; ð45Þ

where
Aþ ¼

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 v11 0 0 0 0 1 0 0 0

0 v22 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 1 0
a
b 1 0 0 0 0 0 0 0 0

a
b

	 

1

0 a
b� v11 0 0 1 0 0 0 0

a
b

	 

2

0 0 a
b� v22 0 0 0 1 0 0

2
66666666666666666664

3
77777777777777777775

;

A� ¼

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 v11 0 0 0 0 1 0 0 0

0 v22 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

;

U ¼ ðu; un; ug1
; ug2

; unn; ung1
; ug1g1

; ung2
; ug2g2

; ug1g2
ÞT
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and
G ¼ 0; 0; 0; 0; 0; 0; 0;
g
b
;

g
b

� �
1

;
g
b

� �
2

� �T

:

To explicitly find out the values of the local coordinate system, note that the second-order structure of the
surface can be computed from the first- and second-order structure of the level set function /. All of the shape
information is contained in the field of normals given by nðxÞ ¼ ð/x;/y ;/zÞ=jr/j.

To compute the principal curvatures, we compute the mean curvature and Gaussian curvature first. The
mean curvature is
H ¼ j1 þ j2

2
¼

/xxð/2
y þ /2

z Þ þ /yyð/2
x þ /2

z Þ þ /zzð/2
x þ /2

yÞ � 2ð/x/y/xy þ /y/z/yz þ /x/z/xzÞ
2ð/2

x þ /2
y þ /2

z Þ
2=3

;

and the Gaussian curvature is given by
K ¼ j1 � j2

¼
/2

xð/yy/zz � /2
yzÞ þ /2

yð/xx/zz � /2
xzÞ þ /2

z ð/xx/yy � /2
xyÞ

ð/2
x þ /2

y þ /2
z Þ

2

þ
2½/x/yð/xz/yz � /xy/zzÞ þ /y/zð/xy/xz � /yz/xxÞ þ /x/zð/xy/yz � /xz/yyÞ�

ð/2
x þ /2

y þ /2
z Þ

2
;

The principal curvatures ji; i ¼ 1; 2 can be computed as
j1 ¼ H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � G

p
; j2 ¼ H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � G

p
:

The 3� 3 matrix of derivatives of nðxÞ is
N ¼ �½nx ny nz�:

The projection of N onto the tangent plane of the surface gives the shape matrix S. Let P be the normal pro-
jection operator, then
P ¼ n� n ¼ 1

jr/j2

/2
x /x/y /x/z

/x/y /2
y /y/z

/x/z /y/z /2
z

2
664

3
775:
The tangential projection operator is T ¼ I � P , and the shape matrix is given by
S ¼ NT :
The shape matrix S is singular and it has three real eigenvalues with three corresponding orthogonal eigenvec-
tors. The eigenvector corresponding to the zero eigenvalue is the normal direction. The two eigenvectors g1

and g2 corresponding to the nonzero eigenvalues are the principal directions.
A very complicated calculation gives for j ¼ 1; 2:
gj;1 ¼ /x/
2
y/yz � /x/y/z/yy þ /x/y/z/zz � /x/

2
z /yz � /3

y/xz þ /2
y/z/xy � /y/

2
z /xz þ /3

z /xy

gj;2 ¼ � /2
x/y/yz � /2

x/z/zz þ /x/
2
y/xz þ /x/y/z/xy þ 2/x/

2
z /xz � /2

y/z/xx � /3
z /xx

þ wj

2v3

ð/2
x/z þ /2

y/z þ /3
z Þ

gj;3 ¼ /2
x/z/yz þ /2

x/y/yy � /x/
2
z /xy � /x/y/z/xz � 2/x/

2
y/xy þ /y/

2
z /xx þ /3

y/xx

� wj

2v3

ð/x/x/y þ /3
y þ /y/

2
z Þ;
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where
v1 ¼ ½/4
xð/yy � /zzÞ

2 þ /4
yð/zz � /xxÞ

2 þ /4
z ð/xx � /yyÞ

2 þ /2
xð/yy/z � 2/y/yzÞ

2 þ /2
xð/zz/y � 2/z/yzÞ

2

þ /2
yð/zz/x � 2/z/xzÞ

2 þ /2
yð/xx/z � 2/x/xzÞ

2 þ /2
z ð/xx/y � 2/x/xyÞ

2 þ /2
z ð/yy/x � 2/y/xyÞ

2

þ 4/2
y/

2
z /

2
yz þ 4/2

x/
2
y/

2
xy þ 4/2

x/
2
z /

2
xz þ 8/x/

2
y/z/yy/xz þ 8/x/y/

2
z /zz/xy þ 8/2

x/y/z/xx/yz

þ 8/3
y/xzð�/z/xy � /x/yzÞ þ 8/3

z /xyð�/x/yz � /y/xzÞ þ 8/3
x/yzð�/y/xz � /z/xyÞ þ 4/4

z /
2
xy þ 4/4

y/
2
xz

þ 4/4
x/

2
yz þ 2/xx/yyð/2

x/
2
y � /2

y/
2
z � /2

x/
2
z Þ þ 2/xx/zzð/2

x/
2
z � /2

x/
2
y � /2

y/
2
z Þ þ 2/yy/zzð/2

y/
2
z � /2

x/
2
z

� /2
x/

2
yÞ þ 4/3

xð/y/zz/xy þ /z/yy/xz � /y/yy/xy � /z/zz/xzÞ þ 4/3
yð/z/xx/yz þ /x/zz/xy � /z/zz/yz

� /x/xx/xyÞ þ 4/3
z ð/x/yy/xz þ /y/xx/yz � /x/xx/xz � /y/yy/yzÞ�

1=2
;

v2 ¼ /xxð/2
y þ /2

z Þ þ /yyð/2
x þ /2

z Þ þ /zzð/2
x þ /2

yÞ � 2ð/x/y/xy þ /y/z/yz þ /x/z/xzÞ;

v3 ¼ /2
x þ /2

y þ /2
z ;

w1;2 ¼ v2 � v1:
These three eigenvectors are normalized to give the local coordinate system.
With the above choice of coordinates, let
Zk ¼ 1; n; g1; g2;
1

2
n2; ng1;

1

2
g2

1; ng2;
1

2
g2

2; g1g2

� �T

k

;

then
C ¼
X
k2Kþ

ckZT
k ðAþÞ

�1G ¼
X
k2Kþ

ck
g
b

nþ 1

2

g
b
ðv11 þ v22Þn2 þ g

b

� �
1

ng1 �
v11

2

g
b

g2
1 þ

g
b

� �
2

ng2 �
v22

2

g
b

g2
2

� �
k

:

Finally, with
W ¼ ð0; 0; 0; 0; 1; 0; 1; 0; 1; 0ÞT;

W ¼
X
k2Kþ

ck ðAþÞ
�1A�

h iT

Zk þ
X
k2K�

ckZk
ð46Þ
is our system of equations for determining the coefficients ck. Like what we do in two dimensions, we can apply
a linear transformation to the set of equations and get rid of the terms with ck; k 2 K�. We premultiply Eq.
(46) with the matrix
T ¼

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 1 0 0 v11 þ v22 0 �v11 0 �v22 0

2
6666666666666666664

3
7777777777777777775

;

and assume that we are able to find ten neighbors out of the 27 neighbors, among which exactly three of them
are exterior points. Now we are left with a 7� 7 system to solve:
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X
k2Kþ

ck 1� a
b

n� 1

2

a
b
ðv11 þ v22Þn2 � a

b

� �
1

ng1 þ
1

2

a
b

v11g
2
1 �

a
b

� �
2

ng2 þ
1

2

a
b

v22g
2
2

� �
¼ 0;

X
k2Kþ

ck g1 þ ng1 v11 �
a
b

� �� �
¼ 0;

X
k2Kþ

ck g2 þ ng2 v22 �
a
b

� �� �
¼ 0;

X
k2Kþ

ckðn2Þk ¼ 2;

X
k2Kþ

ckðg2
1Þk ¼ 2;

X
k2Kþ

ckðg2
2Þk ¼ 2;

X
k2Kþ

ckðg1g2Þk ¼ 0:
We can do everything else in exactly the same way as what we do in two dimensions.

7. Numerical results

With the numerical methods discussed in previous sections, we are able to solve each of the equations
involved in the modeling of the electrodeposition process. In this section, we will first talk about some accu-
racy issues associated with solving our differential equations sequentially, followed by some numerical results.
The last part gives some related future research directions.

7.1. Time-dependent boundary conditions and time splitting

Most of the numerical methods under discussion are second-order accurate for simple test problems. In
general, however, this may not be true for more complicated problems like the ones given in Section 3.

One difficulty lies in the fact that these differential equations usually depend on each other in complex ways.
For example, the speed of propagation of the interface depends on both the accelerator coverage h and the
concentration of copper Cc as shown in Eq. (7), while Eqs. (11) and (12) for h depend on the speed and
the concentration of the accelerator Cm.

To illustrate, we consider the step from time t to time t þ Dt. Regardless of which equation we solve first, we
will need the values of some of the other variables at time t þ Dt to make it second-order in space and time,
and these are not yet available.

Another difficulty is that the interface is moving, and hence carrying boundary conditions. As an exam-
ple, consider the diffusion equation. The mixed boundary conditions hold along the interface, which moves
from time t to time t þ Dt. Thus we need to do something special to make it second-order accurate in
time. One way to solve this problem is to use the method of Twizell, Gumel and Arigu (see [41]) for
time-discretization, which solves the moving boundary problem by solving a sequence of fixed boundary
problems.

To illustrate, consider the diffusion equation
ut ¼ Du in XðtÞ;
ou
on
þ aðtÞu ¼ gðtÞ on oXðtÞ:
Let the time-dependent operator LhðtÞ be such that LhðtÞu is the discretization of the term Du discretized as in
Section 4.3. The TGA method splits the time step Dt as
Dt ¼ l1 þ l2 þ l3:



J.A. Sethian, Y. Shan / Journal of Computational Physics 227 (2008) 6411–6447 6441
For this numerical scheme to be second-order and L0-stable (see [41]), a value a is picked such that
a 2 ½1

2
; 2�

ffiffiffi
2
p
� and we set
l1 ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4aþ 2
p

2
Dt; l2 ¼

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4aþ 2
p

2
Dt; l3 ¼ ð1� aÞDt:
The numerical solution un is then updated as
unþ1 ¼ ðI � l1LhðtnewÞÞ�1ðI � l2LhðtintÞÞ�1ðI þ l3LhðtoldÞÞun; ð47Þ

where
told ¼ tn; tnew ¼ tn þ Dt ¼ tnþ1; tint ¼ tnþ1 � l1 ¼ tn þ l2 þ l3:
Specifically, the discretization (47) is done on XðtnewÞ at each step. The boundary conditions on the fixed
boundary oXðtnewÞ are computed by interpolating values from the moving interface at time told. We use the
second-order extension from Section 4.3.5 for this purpose, and this leads to an overall second-order accurate
method for diffusion equations defined on a region with moving interface.

For our deposition problem, it is not really necessary to use a second-order scheme. A first-order scheme is
enough for us to capture the superfilling phenomena. Thus in our implementation, for each sub-problem, we
solve it using a second-order scheme. But we will not deal with the first difficulty mentioned above in any spe-
cial way, leading to an overall first-order scheme. At each time step tn, we update the variables sequentially. If
some other variables are needed during the updating process, we will use their values at tnþ1 only if they are
available. Otherwise, we will use the values evaluated at time tn.

7.2. Numerical results in two dimensions

First we test our algorithm on a trench with different values of initial coverage and accelerator concentra-
tion. The trench has size 0.5 lm � 1.1 lm with a width-depth ratio of about 1:2. Experiments show that deriv-
atization for 30 s in the electrolyte with 0.5, 5, 50, 500 and 1000 lmol/L accelerator yields initial fractional
catalyst coverage of approximately 0.00054, 0.0054, 0.054, 0.44 and 0.88 respectively (see [30]). These are taken
as the initial conditions for our initial-boundary value problem.

We use a mesh with mesh size h ¼ 1:5� 10�8, and dt is computed based on the value of h and normal speed
of propagation of the interface v so that the CFL stability condition is satisfied.

Experimental results under the same configurations are shown in Fig. 26. Our numerical results shown in
Fig. 27 conform with the experimental results very well. We see that with an initial catalyst coverage of
0.00054, the deposition is predicted to be conformal because the geometric leveling is associated with the slop-
ing sidewalls. In real experiments, the trench to be filled may not be smooth. We add some randomness to the
initial shape and can observe the formation of void in this case as shown in Fig. 28. Increasing the initial cat-
alyst coverage an order of magnitude results in superfilling behavior: enrichment of the catalyst begins on the
bottom of the corners, leading to significant acceleration of the copper deposition rate. Increasing the initial
catalyst coverage even more to 0.054 results in near optimal superfilling behavior, which leads to the change in
convexity on the bottom. Increasing the initial catalyst coverage to 0.44 or 0.88 is predicted to result in failure
to superfill the trench. Catalyst enrichment on the advancing concave corners approaches unity, and a V-notch
geometry is established. The CEAC mechanism fails to fill the feature because the coverage on the bottom is
not much more than coverage on the sidewalls due to the near-saturation coverage on the concave corners.

If we measure the CPU time it takes for each time step, we can see that the multigrid approach to solving
linear systems is noticeably faster than using a direct solver. Since for each time step, all the equations are
solved using explicit methods except for the diffusion equation, we will just record the CPU time for the whole
procedure instead of the time for solving the linear system only.

On a 3.4 GHz CPU machine, when the finest grid is of size 96� 160 with a total number of four levels, the
multigrid method (if it converges) for solving the linear system takes only less than 0.3 s. In contrast, the
SuperLU method takes about 1.5 s. While the difference may not seem to be big in this case, consider the sit-
uation where the accuracy requires us to use finer mesh, say 192� 320 with five levels. Now multigrid takes
about 1.2 s to solve the linear system and SuperLU takes about 20s. Thus, the time it takes for the multigrid



Fig. 26. Experimental results for different initial catalyst coverages. The picture is taken from [30].
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method to solve such a linear system increase much slower than a direct method like SuperLU as the mesh gets
finer. Moreover it also makes efficient use of memory, since we use the finest mesh only for the part of the
domain that is close to the interface.

To estimate the order of accuracy of the overall scheme, we compute the numerical solutions for several
different mesh sizes, which correspond to different maximum number of levels. As we do not know the exact
solution to this problem, we compare all the numerical solutions to the one with a maximum number of six
levels (with mesh size 385� 641) and the result is shown in Fig. 29. For error, we use the L-infinity error in the
concentration. The absolute value of the slope, which is an approximation to the order of accuracy of the over-
all method, is 0.61.

7.3. Numerical results in three dimensions

We test the algorithm on a three-dimensional trench with the size 0.5 lm � 0.5 lm � 1.1 lm for two differ-
ent cases with 5 and 500 lmol/L accelerator in the electrolyte respectively.
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Fig. 27. Numerical results for different initial catalyst coverages.
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The numerical results are shown in Figs. 30 and 31. We can see from Figs. 27 and 30 that in two dimen-
sions, we predict the phenomena of superfilling, while in the corresponding three dimensional case, we get a
void.

One possible explanation for this void is an analogy with a collapsing dumbbell evolving under mean cur-
vature flow: it is well-known that this can split into multiple objects (see [9]). Though the speed of propagation
for the interface does not depend on the mean curvature explicitly, it is a function of the additive coverage h,
which evolves under a conservation law. The key issue is that this conservation law involves a mean curvature
term if we rewrite it by expanding out each term.
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Fig. 29. Errors of solutions with different mesh sizes: L-infinity error on the concentration.
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7.4. Future research directions

The results of this article suggest some future research topics. First, the framework we have presented here
can be extended to a wide range of physical applications involving moving boundaries coupled with partial
differential equations, for example, the hyperbolic conservation laws and the diffusion equation in particular.

An open question is how to solve the linear systems corresponding to the discretizations of diffusion equa-
tions, when the interface has very large local curvatures, or spikes. We may rewrite local equations, choose
appropriate stencils, use non-rectangular grid cells or there may exist other ways for the multigrid algorithm
to converge for problems with bad geometries.

To model the process more realistically, we can add some noise terms which have physical meanings instead
of just by adding random numbers to the initial configuration, as what we did in our of our tests (Fig. 28). This
may give a better prediction to what initial configurations lead to superfilling.



Fig. 30. Numerical results for 5 lmol/L accelerator and thus 0.0054 initial fractional coverage at t = 32, 50, 58, 62 and 68 s.

Fig. 31. Numerical results for 500 lmol/L accelerator and thus 0.44 initial fractional coverage at t = 1, 3, 6 and 9 s.
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